Standard Deviation
In the late 1860s, Sir Francis Galton formulated the law of deviation from an average, which has become one of the most useful statistical measures, known as the standard deviation, or SD as most often abbreviated. The standard deviation statistic is one way to describe the results of a set of measurements and, at a glance, it can provide a comprehensive understanding of the characteristics of the data set. Examples of some of the more familiar and easily calculated descriptors of a sample are the range, the median, and the mean of a set of data. The range provides the extent of the variation of the data, providing the highest and lowest scores but revealing nothing about the pattern of the data. And, either or ...
Looks like you do not have access to this content.
Reader's Guide
Descriptive Statistics
Distributions
Graphical Displays of Data
Hypothesis Testing
Important Publications
Inferential Statistics
Item Response Theory
Mathematical Concepts
Measurement Concepts
Organizations
Publishing
Qualitative Research
Reliability of Scores
Research Design Concepts
Research Designs
Research Ethics
Research Process
Research Validity Issues
Sampling
Scaling
Software Applications
Statistical Assumptions
Statistical Concepts
Statistical Procedures
Statistical Tests
Theories, Laws, and Principles
Types of Variables
Validity of Scores
- All
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Y
- Z