Bias
Bias is systematic error in data collected to address a research question. In contrast to random errors, which are randomly distributed and therefore even out across people or groups studied, biases are errors that are systematically related to people, groups, treatments, or experimental conditions and therefore cause the researcher to overestimate or underestimate the measurement of a behavior or trait. Bias is problematic because it can endanger the ability of researchers to draw valid conclusions about whether one variable causes a second variable (threats to internal validity) or whether the results generalize to other people (threats to external validity). Bias comes in many forms, including sampling bias, selection bias, experimenter expectancy effects, and response bias.
Human participants in studies generally represent a subset of the ...
Looks like you do not have access to this content.
Reader's Guide
Descriptive Statistics
Distributions
Graphical Displays of Data
Hypothesis Testing
Important Publications
Inferential Statistics
Item Response Theory
Mathematical Concepts
Measurement Concepts
Organizations
Publishing
Qualitative Research
Reliability of Scores
Research Design Concepts
Research Designs
Research Ethics
Research Process
Research Validity Issues
Sampling
Scaling
Software Applications
Statistical Assumptions
Statistical Concepts
Statistical Procedures
Statistical Tests
Theories, Laws, and Principles
Types of Variables
Validity of Scores
- All
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Y
- Z