Monte Carlo Simulation
A Monte Carlo simulation is a methodological technique used to evaluate the empirical properties of some quantitative method by generating random data from a population with known properties, fitting a particular model to the generated data, collecting relevant information of interest, and replicating the entire procedure a large number of times (e.g., 10,000) in order to obtain properties of the fitted model under the specified condition(s). Monte Carlo simulations are generally used when analytic properties of the model under the specified conditions are not known or are unattainable. Such is often the case when no closed-form solutions exist, either theoretically or given the current state of knowledge, for the particular method under the set of conditions of interest. When analytic properties are known for a ...
Looks like you do not have access to this content.
Reader's Guide
Descriptive Statistics
Distributions
Graphical Displays of Data
Hypothesis Testing
Important Publications
Inferential Statistics
Item Response Theory
Mathematical Concepts
Measurement Concepts
Organizations
Publishing
Qualitative Research
Reliability of Scores
Research Design Concepts
Research Designs
Research Ethics
Research Process
Research Validity Issues
Sampling
Scaling
Software Applications
Statistical Assumptions
Statistical Concepts
Statistical Procedures
Statistical Tests
Theories, Laws, and Principles
Types of Variables
Validity of Scores
- All
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Y
- Z