Skip to main content

Conditional Independence

Edited by: Published: 2018
+- LessMore information
Download PDF

Statistical independence and conditional independence (CI) are important concepts in statistics, artificial intelligence, and related fields. Let X, Y, and Z denote three sets of random variables, and let P denote their probability distribution or density functions. X and Y are conditionally independent given Z, denoted by XY | Z, if and only if P(X, Y | Z) = P(X | Z) P(Y | Z). It reflects the fact that given the values of Z, further knowing the values of X does not provide any additional information about Y. Generally speaking, such a CI relationship allows us to drop X when constructing a probabilistic model for Y with (X, Z), resulting in a parsimonious representation. Moreover, independence and CI play a central role ...

Looks like you do not have access to this content.

Reader's Guide

  • All
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z

      Copy and paste the following HTML into your website