Posterior Distribution
In Bayesian analysis, the posterior distribution, or posterior, is the distribution of a set of unknown parameters, latent variables, or otherwise missing variables of interest, conditional on the current data. The posterior distribution uses the current data to update previous knowledge, called a prior, about that parameter. A posterior distribution, p(θ|x), is derived using Bayes’s theorem
where θ is the unknown parameter(s) and x is the current data. The probability of the data given the parameter p(x|θ) is the likelihood L(θ|x). The prior distribution, p(θ), is user specified to represent prior knowledge about the unknown parameter(s). The last piece of Bayes’s theorem, the marginal distribution of data, p(x), is computed using the likelihood and the prior. The distribution of the posterior is determined by the ...
Looks like you do not have access to this content.
Reader's Guide
Assessment
Cognitive and Affective Variables
Data Visualization Methods
Disabilities and Disorders
Distributions
Educational Policies
Evaluation Concepts
Evaluation Designs
Human Development
Instrument Development
Organizations and Government Agencies
Professional Issues
Publishing
Qualitative Research
Research Concepts
Research Designs
Research Methods
Research Tools
Social and Ethical Issues
Social Network Analysis
Statistics
Teaching and Learning
Theories and Conceptual Frameworks
Threats to Research Validity
- All
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Y
- Z