Bootstrapping
Bootstrapping is an approach to properties of statistics, such as sampling variances, standard errors, and confidence intervals, that does not rely on a particular assumption about the shape of the distribution around a given statistic. Bootstrapping is therefore said to be a nonparametric approach to statistical inference. It can be particularly useful when the researcher does not know the theoretical distribution of a given test statistic or when no such distribution exists.
Bootstrap methods for evaluating statistics rely on data-based simulations wherein the observed data stand in for the population of interest. Measures of uncertainty around a statistic that are obtained via the bootstrap therefore might be thought of as being drawn from samples of a given sample, as bootstrapping is a computationally ...
Looks like you do not have access to this content.
Reader's Guide
- All
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Y
- Z