Significance Level, Interpretation and Construction
Hypothesis testing is not set up so that a researcher can absolutely prove a null hypothesis. Rather, it is set up so that when a researcher does not find evidence against the null hypothesis, he or she fails to reject the null hypothesis. When the researcher does find strong enough evidence against the null hypothesis, he or she rejects the null hypothesis. This, although often confusing, is a subject with vast field of statistical application. In hypothesis testing, the significance level at some preassigned small value α is used to control the probability of Type I error (rejecting the null hypothesis when it is true), which is vital in building up theory and methods. Among many significance-level-related notions for interpretation and elements for construction of ...
Looks like you do not have access to this content.
Reader's Guide
Descriptive Statistics
Distributions
Graphical Displays of Data
Hypothesis Testing
Important Publications
Inferential Statistics
Item Response Theory
Mathematical Concepts
Measurement Concepts
Organizations
Publishing
Qualitative Research
Reliability of Scores
Research Design Concepts
Research Designs
Research Ethics
Research Process
Research Validity Issues
Sampling
Scaling
Software Applications
Statistical Assumptions
Statistical Concepts
Statistical Procedures
Statistical Tests
Theories, Laws, and Principles
Types of Variables
Validity of Scores
- All
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Y
- Z