Biased Estimator
In many scientific research fields, statistical models are used to describe a system or a population, to interpret a phenomenon, or to investigate the relationship among various measurements. These statistical models often contain one or multiple components, called parameters, that are unknown and thus need to be estimated from the data (sometimes also called the sample). An estimator, which is essentially a function of the observable data, is biased if its expectation does not equal the parameter to be estimated.
To formalize this concept, suppose θ is the parameter of interest in a statistical model. Let be its estimator based on an observed sample. Then
is a biased estimator if
, where E denotes the expectation operator. Similarly, one may say that
...
Looks like you do not have access to this content.
Reader's Guide
Descriptive Statistics
Distributions
Graphical Displays of Data
Hypothesis Testing
Important Publications
Inferential Statistics
Item Response Theory
Mathematical Concepts
Measurement Concepts
Organizations
Publishing
Qualitative Research
Reliability of Scores
Research Design Concepts
Research Designs
Research Ethics
Research Process
Research Validity Issues
Sampling
Scaling
Software Applications
Statistical Assumptions
Statistical Concepts
Statistical Procedures
Statistical Tests
Theories, Laws, and Principles
Types of Variables
Validity of Scores
- All
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Y
- Z