Multivariate Normal Distribution
One of the most familiar distributions in statistics is the normal or Gaussian distribution. It has two parameters, corresponding to the first two moments (mean and variance). Once these parameters are known, the distribution is completely specified. The multivariate normal distribution is a generalization of the normal distribution and also has a prominent role in probability theory and statistics. Its parameters include not only the means and variances of the individual variables in a multivariate set but also the correlations between those variables. The success of the multivariate normal distribution is due to its mathematical tractability and to the multivariate central limit theorem, which states that the sampling distributions of many multivariate statistics are normal, regardless of the parent distribution. Thus, the multivariate normal distribution ...
Looks like you do not have access to this content.
Reader's Guide
Descriptive Statistics
Distributions
Graphical Displays of Data
Hypothesis Testing
Important Publications
Inferential Statistics
Item Response Theory
Mathematical Concepts
Measurement Concepts
Organizations
Publishing
Qualitative Research
Reliability of Scores
Research Design Concepts
Research Designs
Research Ethics
Research Process
Research Validity Issues
Sampling
Scaling
Software Applications
Statistical Assumptions
Statistical Concepts
Statistical Procedures
Statistical Tests
Theories, Laws, and Principles
Types of Variables
Validity of Scores
- All
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Y
- Z