Fixed-Effects Models
Fixed-effects models are a class of statistical models in which the levels (i.e., values) of independent variables are assumed to be fixed (i.e., constant), and only the dependent variable changes in response to the levels of independent variables. This class of models is fundamental to the general linear models that underpin fixed-effects regression analysis and fixed-effects analysis of variance, or ANOVA (fixed-effects ANOVA can be unified with fixed-effects regression analysis by using dummy variables to represent the levels of independent variables in a regression model; see the article by Andrew Gelman for more information); the generalized linear models, such as logistic regression for binary response variables and binomial counts; Poison regression for Poisson (count) response variables; as well as the analysis of categorical data using ...
Looks like you do not have access to this content.
Reader's Guide
Descriptive Statistics
Distributions
Graphical Displays of Data
Hypothesis Testing
Important Publications
Inferential Statistics
Item Response Theory
Mathematical Concepts
Measurement Concepts
Organizations
Publishing
Qualitative Research
Reliability of Scores
Research Design Concepts
Research Designs
Research Ethics
Research Process
Research Validity Issues
Sampling
Scaling
Software Applications
Statistical Assumptions
Statistical Concepts
Statistical Procedures
Statistical Tests
Theories, Laws, and Principles
Types of Variables
Validity of Scores
- All
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Y
- Z