Conditional Independence
Statistical independence and conditional independence (CI) are important concepts in statistics, artificial intelligence, and related fields. Let X, Y, and Z denote three sets of random variables, and let P denote their probability distribution or density functions. X and Y are conditionally independent given Z, denoted by X ⊥ Y | Z, if and only if P(X, Y | Z) = P(X | Z) P(Y | Z). It reflects the fact that given the values of Z, further knowing the values of X does not provide any additional information about Y. Generally speaking, such a CI relationship allows us to drop X when constructing a probabilistic model for Y with (X, Z), resulting in a parsimonious representation. Moreover, independence and CI play a central role ...
Looks like you do not have access to this content.
Reader's Guide
Assessment
Cognitive and Affective Variables
Data Visualization Methods
Disabilities and Disorders
Distributions
Educational Policies
Evaluation Concepts
Evaluation Designs
Human Development
Instrument Development
Organizations and Government Agencies
Professional Issues
Publishing
Qualitative Research
Research Concepts
Research Designs
Research Methods
Research Tools
Social and Ethical Issues
Social Network Analysis
Statistics
Teaching and Learning
Theories and Conceptual Frameworks
Threats to Research Validity
- All
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Y
- Z