Kolmogorov–Smirnov Test
The Kolmogorov–Smirnov (KS) test is a statistical procedure for comparing the distribution of random samples. The one-sample KS test can be used to determine whether a data set follows any hypothesized (but fully specified) continuous density. Perhaps its most common use is to verify whether a data sample follows the normal (or Gaussian) density, such as checking the assertion that residuals from a fitted regression model follow the normal density. In the two-sample case, the KS procedure tests whether two data samples have equal underlying distributions. An example is comparing assessment scores for two different schools, when it is known that the scores do not follow the normal distribution.
This entry describes the basic principles of the KS test, including the cumulative distribution function (CDF) and ...
Looks like you do not have access to this content.
Reader's Guide
Assessment
Cognitive and Affective Variables
Data Visualization Methods
Disabilities and Disorders
Distributions
Educational Policies
Evaluation Concepts
Evaluation Designs
Human Development
Instrument Development
Organizations and Government Agencies
Professional Issues
Publishing
Qualitative Research
Research Concepts
Research Designs
Research Methods
Research Tools
Social and Ethical Issues
Social Network Analysis
Statistics
Teaching and Learning
Theories and Conceptual Frameworks
Threats to Research Validity
- All
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Y
- Z