Spearman Rank Order Correlation
For ordinal-level data, the Spearman rank order correlation is one of the most common methods to measure the direction and strength of the association between two variables. First put forth by British psychologist Charles E. Spearman in a 1904 paper, the nonparametric (i.e., not based on a standard distribution) statistic is computed from the sequential arrangement of the data rather than the actual data values themselves. The Spearman rank order correlation is a specialized case of the Pearson product-moment correlation that is adjusted for data in ranked form (i.e., ordinal level) rather than interval or ratio scale. It is most suitable for data that do not meet the criteria for the Pearson product-moment correlation coefficient (or Pearson's r), such as variables with a non-normal distribution ...
Looks like you do not have access to this content.
Reader's Guide
Descriptive Statistics
Distributions
Graphical Displays of Data
Hypothesis Testing
Important Publications
Inferential Statistics
Item Response Theory
Mathematical Concepts
Measurement Concepts
Organizations
Publishing
Qualitative Research
Reliability of Scores
Research Design Concepts
Research Designs
Research Ethics
Research Process
Research Validity Issues
Sampling
Scaling
Software Applications
Statistical Assumptions
Statistical Concepts
Statistical Procedures
Statistical Tests
Theories, Laws, and Principles
Types of Variables
Validity of Scores
- All
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Y
- Z