Categorical Data Analysis
A categorical variable consists of a set of non-overlapping categories. Categorical data are counts for those categories. The measurement scale of a categorical variable is ordinal if the categories exhibit a natural ordering, such as opinion variables with categories from “strongly disagree” to “strongly agree.” The measurement scale is nominal if there is no inherent ordering. The types of possible analysis for categorical data depend on the measurement scale.
When the subjects measured are cross-classified on two or more categorical variables, the table of counts for the various combinations of categories is a contingency table. The information in a contingency table can be summarized and further analyzed through appropriate measures of association and models as discussed below. These measures and models differentiate according to ...
Looks like you do not have access to this content.
Reader's Guide
Descriptive Statistics
Distributions
Graphical Displays of Data
Hypothesis Testing
Important Publications
Inferential Statistics
Item Response Theory
Mathematical Concepts
Measurement Concepts
Organizations
Publishing
Qualitative Research
Reliability of Scores
Research Design Concepts
Research Designs
Research Ethics
Research Process
Research Validity Issues
Sampling
Scaling
Software Applications
Statistical Assumptions
Statistical Concepts
Statistical Procedures
Statistical Tests
Theories, Laws, and Principles
Types of Variables
Validity of Scores
- All
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Y
- Z