Missing Data, Imputation of
Imputation involves replacing missing values, or missings, with an estimated value. In a sense, imputation is a prediction solution. It is one of three options for handling missing data. The general principle is to delete when the data are expendable, impute when the data are precious, and segment for the less common situation in which a large data set has a large fissure. Imputation is measured against deletion; it is advantageous when it affords the more accurate data analysis of the two. This entry discusses the differences between imputing and deleting, the types of missings, the criteria for preferring imputation, and various imputation techniques. It closes with application suggestions.

The trade-off is between inconvenience and bias. There are two choices ...
Looks like you do not have access to this content.
Reader's Guide
Descriptive Statistics
Distributions
Graphical Displays of Data
Hypothesis Testing
Important Publications
Inferential Statistics
Item Response Theory
Mathematical Concepts
Measurement Concepts
Organizations
Publishing
Qualitative Research
Reliability of Scores
Research Design Concepts
Research Designs
Research Ethics
Research Process
Research Validity Issues
Sampling
Scaling
Software Applications
Statistical Assumptions
Statistical Concepts
Statistical Procedures
Statistical Tests
Theories, Laws, and Principles
Types of Variables
Validity of Scores
- All
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Y
- Z