Autocorrelation
Autocorrelation describes sample or population observations or elements that are related to each other across time, space, or other dimensions. Correlated observations are common but problematic, largely because they violate a basic statistical assumption about many samples: independence across elements. Conventional tests of statistical significance assume simple random sampling, in which not only each element has an equal chance of selection but also each combination of elements has an equal chance of selection; autocorrelation violates this assumption. This entry describes common sources of autocorrelation, the problems it can cause, and selected diagnostics and solutions.
What is the best predictor of a student's 11th-grade academic performance? His or her 10th-grade grade point average. What is the best predictor of this year's crude divorce rate? Usually last ...
Looks like you do not have access to this content.
Reader's Guide
Descriptive Statistics
Distributions
Graphical Displays of Data
Hypothesis Testing
Important Publications
Inferential Statistics
Item Response Theory
Mathematical Concepts
Measurement Concepts
Organizations
Publishing
Qualitative Research
Reliability of Scores
Research Design Concepts
Research Designs
Research Ethics
Research Process
Research Validity Issues
Sampling
Scaling
Software Applications
Statistical Assumptions
Statistical Concepts
Statistical Procedures
Statistical Tests
Theories, Laws, and Principles
Types of Variables
Validity of Scores
- All
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Y
- Z