Hierarchical Linear Modeling
Hierarchical linear modeling (HLM, also known as multilevel modeling) is a statistical approach for analyzing hierarchically clustered observations. Observations might be clustered within experimental treatment (e.g., patients within group treatment conditions) or natural groups (e.g., students within classrooms) or within individuals (repeated measures). HLM provides proper parameter estimates and standard errors for clustered data. It also capitalizes on the hierarchical structure of the data, permitting researchers to answer new questions involving the effects of predictors at both group (e.g., class size) and individual (e.g., student ability) levels. Although the focus here is on two-level models with continuous outcome variables, HLM can be extended to other forms of data (e.g., binary variables, counts) with more than two levels of clustering (e.g., student, classroom, and school). The ...
Looks like you do not have access to this content.
Reader's Guide
Descriptive Statistics
Distributions
Graphical Displays of Data
Hypothesis Testing
Important Publications
Inferential Statistics
Item Response Theory
Mathematical Concepts
Measurement Concepts
Organizations
Publishing
Qualitative Research
Reliability of Scores
Research Design Concepts
Research Designs
Research Ethics
Research Process
Research Validity Issues
Sampling
Scaling
Software Applications
Statistical Assumptions
Statistical Concepts
Statistical Procedures
Statistical Tests
Theories, Laws, and Principles
Types of Variables
Validity of Scores
- All
- A
- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Y
- Z